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1. Eddington stars
• First attempts

·The problem of the gravitational equilibrium of the sun was discussed by
Lane (1870), Ritter (1880) who presented polytropic equations and solutions
in general form, and Emden with the publication of Gaskugeln (1907).
·The problem of the the origin of the sun’s energy source had been addressed
by Waterston (1845), Helmholtz (1853), and Kelvin (1880), who advocated
the contraction hypothesis.
·The sun and the stars were thought to be composed of a perfect gas of
uniform composition, and the energy transport to occur from convection. The
exact nature of stellar matter was a debatable question.
·Schwarzschild (1906) brought forward the importance of radiative
equilibrium in the solar atmosphere and then Eddington (1916) understood
that radiation pressure must stand with gravitation and gas pressure as a third
major factor in the maintenance of equilibrium within the whole star, a
research culminating in his book The Internal Constitution of the Stars
(1926). It opened a new era of stellar structure and evolution along with the
possibility of explaining the Hertzprung-Russell diagram.



1. Eddington stars
• The standard stellar model of Eddington

·The equations are four: Euler, continuity, energy generation, and heat tranfer,
dP
dr

=−ρ
Gm
r2 ,

dm
dr

= 4πr2
ρ ,

dl
dr

= 4πr2
ρε ,

dT
dr

=− 3κρ

4acT3
l

4πr2 .

They are supplemented by equations of state: P = Pgas +Prad =
Rgas

µ
ρT+

1
3 aT4, ε = coρcTd, κ = aoρaTb. Get P, m, l, and T with boundary conditions
m(0) = 0, l(0) = 0, P(R) = 0, and T(R) = 0, m(R) = M and l(R) = L, the total
mass and luminosity. Dividing the fourth by the first yields dPrad

dP = κl
4πcGm .

Dividing the third by the second yields dl
dm = ε . Eddington assumes l

m = η
L
M ,

with η = 1 at the surface and increasing inwards. The opacity increases
outwards, so assume κη = κ0 = constant. Get dPrad

dP = κ0 L
4πcGM . Integrating

Prad =
κ0 L

4πcGM
P .

Therefore, constancy of κη = κ0 implies a constant ratio of radiation pressure
to total pressure. Define β =

Pgas
P , 1−β = Prad

P .



1. Eddington stars

·Then, P =
Pgas
β

=
Rgas
β µ

ρT and P = Prad
1−β

= 1
3

a
1−β

T4.
·Thus

P = Kρ
4/3 , K =

[
3R4

gas(1−β )

aµ4β 4

]1/3

,

a polytropic equation of state with n = 3.

Eddington star 
protons 

electrons

P=K

M

R

radiation

ρ
4/3

·Use Lane-Emden equation for polytropics results. Put r =
(

K
πGρ

2/3
c

)1/2

ξ ,

then R =

(
K

πGρ
2/3
c

)1/2

ξ3 and M = 4πc3
( K

πG

)3/2, with ξ3 = 6.897 and

c3 = 2.018. Thus 1−β = α M2µ4β 4, for α = aπG3

48R4
gasc2

3
. It is a quartic equation

for β . When the star’s mass M is small one has β = 1, gas pressure
dominates, when M is very large one has β = 0, radiation pressure dominates.



1. Eddington stars

·Find the central values ρc =
ξ 3

3
4πc3

M
R3 , pc =

ξ 4
3

16πc2
3

M
R4 , Tc =

ξ3
4c3

µβ

Rg

GM
R .

·For the sun get β = 1−6.58×10−4, dominated by gas pressure. Suppose
µ = 0.6 then Tc = 1.2×107 K. A first good estimate for the central
temperature. After having found this temperature and believing that a star
draws on some vast reservoir of energy unknown at the time, Eddington states
(1926) “we do not argue with the critic who urges that the stars are not hot
enough for this process; we tell him to go and find a hotter place.” Earlier, in a
report to the British Association he was prophetic (1920): “If, indeed, the
sub-atomic energy in the stars is being freely used to maintain their great
furnaces, it seems to bring a little nearer to fullfilment our dream of
controlling this latent power for the well-being of the human race - or for its
suicide.”

·Also can found from the model L = 4πcGM
κ0

(1−β ). Thus

L = γµ
4
β (M,µ)M3 ,

for some γ . The mass-luminosity relation, at the time a theoretical prediction.



2. Compact stars
·A compact star is a star whose radius R is not much larger than its own
gravitational radius rg.
·The first compact star to be observed was a white dwarf. Although relatively
large R' 103rg, it baffled astrophysicists in 1910 as its density was amazingly
high. It was solved by Fowler (1926) with the degeneracy equation of state,
by Anderson (1929) and Stoner (1930) that identified the existence of a mass
limit through a relativistic treatment, and finally by Chandrasekhar (1931) for
a polytropic equation of state with the definitive mass limit.
·The second compact star to be observed was a neutron star. This is really
compact as R' 2rg and general relativity rather than Newtonian gravitation is
needed to explain its structure (Oppenheimer and Volkoff 1939).
·There are no other observed compact stars.
·Compact stars can be realized as solutions of general relativity. Outside, in
vacuum, one has, e.g., ds2 =−

(
1− rg

r

)
dt2 + dr2

(1− rg
r )

+ r2
(
dθ 2 + sin2

θ dφ 2
)
,

the Schwarzschild solution (1916). Inside one has one form or another of
matter, possibly static and spherically symmetric. Here rg = 2m.



2. Compact stars

·Buchdahl bound (1949): Model-independent bound on general relativistic
stars stating that for a Schwarzschild exterior the radius R of any nonsingular
static perfect fluid body is bounded by R > 9

8 rg. It is realized by the
Schwarzschild interior solution where at the bound the pressure becomes
infinite and the spacetime singular. This is a stronger limit than R > rg that
excludes trapped surfaces.

·Neutron stars obey the Buchdahl bound. They were theoretical constructs for
more than thirty years. Since the physicists know that reality goes beyond
what meets the eye, it was of great interest to speculate on what was the final
state of total gravitational collapse.

·This lead to black holes. Black holes are not compact stars.



3. Black holes
·Black holes were found by Oppenheimer and Snyder (1939). Schwarzschild
exterior when joined to matter interior allowed to collapse passing through its
own gravitational radius and forming an event horizon indeed yields a black
hole. In vacuum rg is the event horizon r+, r+ = rg.
·In its full vacuum form Schwarzschild represents a wormhole, with its two
phases, the white hole and the black hole, connecting two asympotically flat
universes (Kruskal 1960, Misner-Thorne-Wheeler 1973).
·Other black holes in general relativity: Kerr-Newman family and its particular
cases: Schwarzchild, Reissner-Nordström, Kerr. Now a profusion of
theoretical BHs of all types, in all theories, with all charges, in all dimensions
(Lemos 1997).
·Black holes can be astrophysical, there are many stellar black holes and all
galaxies contain a central supermassive black hole, all form from gravitational
collapse (Lynden-Bell 1969). We can now detect mergers through
gravitational waves (LIGO-Virgo 2015-2019). Could come from physics,
small black holes formed from particle collision. Perhaps the BH is the
elementary particle of gravitation.



3. Black holes
·Classically, BHs well understood from the outside. For the inside, classically
there is no definitive answer, they can harbor singularities, or perhaps they can
be regular. The BH interior is one of the outstanding problems in gravitational
theory.

·Quantically, BHs still pose problems related to the Hawking radiation and
entropy, it is a low energy quantum gravity phenomenon. The singularity
itself is a full quantum gravity problem.

·BHs form quite naturally and the uniqueness theorems are quite powerful, but
a time immemorial question is: Can there be objects with R = r+? Are there
black hole mimickers? (Damour-Solodukhin 2007, Lemos-Zaslavskii 2008).

·It is of great interest to speculate on the existence of compact objects that
might obey R = r+. Speculations include gravastars (Mazur-Mottola 2001),
highly compact boson stars (Liebling-Palenzuela 2017), and quasiblack holes
(Lemos-Zaslavskii 2007-2019).

·Here we advocate the QBH. It shows the behavior of highly compact stars.



4. Quasiblack holes
• Examples

·Putting charge into the matter to bypass the Buchdahl bound a new world of
objects and states opens up, objects with R = r+. The charge can be electrical,
or angular momentum, or other charge.
·Newtonian gravitation with electric charge, Newton-Coulomb: Two massive
charged particles

m m

e e

Fe Fg Fg Fe

Fg =
m2

r2 and Fe =
e2

r2 . When m = e Fg = Fe.
Another particle, any number, continuous distribution, any symmetry, any
configuration, result holds.
·General relativity, Einstein-Maxwell: Weyl (1917), Majumdar (1947),
Papapetrou (1947) showed ds2 =−W2(xi)dt2 +gij(xk)dxi dxj for
W2 = W2(φ), φ the electric potential, in vacuum W2 = (φ +b)2 + c.
Moreover, for W2(φ) = (φ +b)2 in matter then ρm = ρe, extremal matter.
Called Majumdar-Papapetrou solutions in Hartle-Hawking (1973) when
studying a number of extremal BHs scattered around.



4. Quasiblack holes
·To make a star put a boundary on the matter: Majumdar-Papapetrou makes
the interior, exterior is extremal RN, the global solution is a Bonnor star
(Bonnor 1953-2000, Lemos-Zanchin 2008).
·Examples of Bonnor stars:
·Star of clouds.
Star has m = q. proton

1

R

vacuum

Bonnor star

10 neutrons
18

m

·Star of supersymmetric stable particles with ms = es. Star has total mass
m and total charge q with m = q.

·For any star radius R the star is in equilibrium. Inclusive for R = r+. What
happens when R shrinks to r+? Something new: a QBH forms.

R
R

R

r+r r r+ + +

star
of

surface

star

star
star

of

of
of

surface

surface
surface

quasiblack
hole

R



4. Quasiblack holes
• Other examples

·Majumdar-Papapetrou stars asymptotic to extremal Reissner-Nordström
(Lemos-Weinberg 2004).
·Bonnor stars with a sharp boundary (Lemos-Zanchin 2008).
·Spheroidal stars made of extremal charged matter (Bonnor 2010).
·Quasiblack holes with pressure: Relativistic charged spheres as the frozen
stars (Lemos-Zanchin 2010, de Felice et al 1995).
·Yang-Mills-Higgs magnetic monopoles (Lue-Weinberg 1998, 1999,
Lemos-Zanchin 2006).
·Rotating matter at the extremal limit (Bardeen-Wagoner 1971, Lemos-Zas- lavski
2009).
·Matter with spin in Einstein-Cartan theory (Lemos 2019).
·Shells or matter with unbound pressure (Lemos-Zaslavskii-et al 2009-2019).
·Since there are ubiquitous solutions one should consider the core properties of
those solutions, the most independently as possible from the matter they are
made, in much the same way as one does for BHs.



4. Quasiblack holes
• Features and definition of a QBH

·Consider a static spherically symmetric metric written as
ds2 =−B(r)dt2 +A(r)dr2 + r2 (dθ

2 + sin2
θ dφ

2) ,
Interior metric and asymptotic flat region. Consider the solution has properties
(a) the function 1/A(r) attains a minimum at some r∗ 6= 0, such that
1/A(r∗) = ε , with ε � 1, for invariant definition, replace 1/A by (∇r)2.
(b) For such a small but nonzero ε the configuration is regular everywhere
with a nonvanishing metric function B.
(c) In the limit ε → 0 the metric coefficient B→ 0 for all r ≤ r∗.

1

1/A(r)

1

B(r)

1 1

QBH

BH

QBH

BH

r
−
r

r
r
−

+ +

·These three features define a QBH.



4. Quasiblack holes
• Properties

·The QBH is on the verge of forming an event horizon, instead, a quasihorizon
appears.
·The curvature invariants remain regular everywhere.
·A free-falling observer finds in his frame infinite tidal forces at the interface
showing some form of degeneracy, a kind of a singularity.
·Outer and inner regions become mutually impenetrable and disjoint. E.g., in
the Lemos-Weinberg solution, interior is Bertotti-Robinson, quasihorizon
region is extremal Bertotti-Robinson, and exterior is extremal RN.
·There are infinite redshift whole 3-regions.
·For far away observers the spacetime is indistinguishable from that of black
holes. QBHs are black hole mimickers.
·QBHs with finite stresses must be extremal to the outside (Lemos-Zaslavskii
2007, 2008).
·QBHs have continuous radial pressure pin

r (r+) = pout
r (r+). When extremal

from the inside find pr(r+) =−ρ(r+), the same as for dirty BHs.



4. Quasiblack holes
• Mass formula

·Put the metric in Gaussian coordinates near the quasihorizon in the form
ds2 =−N2dt2 +dl2 +gabdxadxb, with a,b = 1,2. The Kretschmann scalar is
given by Kr = PijklPijkl +4CijCij where i, j = 1,2,3. Pijkl is the curvature
tensor for t = const, and

Cij =
N;ij

N
.

;i a covariant derivative. As the metric of the 3-space is positive definite, all
terms enter the expression with a positive sign, so each term should be finite
separately. QBH means N = N(xa)→ 0. Choose l = 0 on the surface. Putting
′ ≡ ∂

∂ l and ;a the covariant derivative for gab, find

lim
l→0

Cll =
liml→0 N′′

N0
, lim

l→0
Cal =

liml→0 N′;a
N0

.

Finiteness of Kr implies limε→0 liml→0 N′′ = 0 and limε→0 liml→0 N′;a = 0.
Write N = N0+ κ1(xa,ε)l+κ2(xa,ε) l2

2! +κ3(xa,ε) l3
3! +O(l4) to obtain

limε→0 κ1(xa,ε) = κ and limε→0 κ2 = 0. So at the quasihorizon

N = N0 +κl+κ3(xa)
l3

3!
+O(l4) .



4. Quasiblack holes
·Now, when there is matter the mass is given by the Tolman formula (totally
different from Komar in the BH case Bardeen-Carter-Hawking 1973),

m =
∫
(−T0

0 +T i
i )
√
−gd3x . Split m = Min +Msurf +Mout .

Min =
∫

in(−T0
0 +T i

i )N
√

g3d3x, so that Min ≤ NB (M0 +Mk). Since NB→ 0
one has Min = 0. For Mout one has Mout =

∫
out(−T0

0 +Tk
k )N
√

g3d3x, so find
Mout = ϕhq+Mmatter

out .

For the surface, from δ contributions have Sν
µ =

∫
Tν

µ dl. So that one gets
Msurf =

∫
(−S0

0 +Sa
a)N dσ . Now, one has 8πSν

µ =
(
[Kν

µ ]−δ ν
µ [K]

)
, where Kν

µ

is the extrinsic curvature tensor, [...] = [(...)+− (...)−], and + and − refer to
the outer and inner sides. Find Msurf =

1
4π

∫
surf

[(
∂N
∂ l

)
+
−
(

∂N
∂ l

)
−

]
dσ . Now

( ∂N
∂ l )−→ 0 and N = N0 +κl+κ3(xa) l3

3! +O(l4), so ( ∂N
∂ l )+ = κ . Finally,

Msurf =
κA
4π

, A being the quasihorizon area .

Interpret κ as a surface density (Lemos-Zaslavskii 2018).



4. Quasiblack holes
Putting all the masses together, the total mass of a system containing a
quasiblack hole is

m =
κA
4π

+ϕhq+Mmatter
out .

Same form as the mass formula for black holes and surroundings (BCH 1973),
but different means. For vacuum outside, Mmatter

out = 0, the mass of the
quasiblack hole is m = κA

4π
+ϕhq, Smarr’s formula (Smarr 1973) but for QBHs.

For the extremal case κA
4π

goes to zero and m = q. Note: In non-extremal case
Msurf 6= 0 contribution comes from |Sµ

ν | → ∞. In extremal case Msurf = 0
contribution comes from |Tµ

ν | finite (Lemos-Zaslavskii 2008).

·When there is rotation ωh and so there is angular-momentum J the mass
formula for quasiblack holes is (Lemos-Zaslavskii 2009)

m =
κA
4π

+2ωhJ+ϕhq+Mmatter
out .

In vacuum, M out = 0, m = κA
4π

+2ωhJ+ϕhq.



4. Quasiblack holes
• QBH entropy

·Imagine a collapsing body. When the surface is at r+ there is no reason for
S = 1

4 A+, it appears as a jump. By working with a quasistatic collapse and a
QBH approach we want to throw some light on the origin of the entropy. We
use the 1st law of thermodynamics for the matter and gravitational fields
(Lemos-Zaslavskii 2010).

R
R

R

r+r r r+ + +

star
of

surface

star

star
star

of

of
of

surface

surface
surface

quasiblack
hole

R

·Generally need an equation of state to integrate the first law of
thermodynamics on a path along the energy first and along radius after, say.
Not here. Pick another path, namely, choose sequence of configurations such
that all members remain on the threshold of horizon formation and integrate
over this very subset. The answer should be model-independent. In brief: the
approach explores the fact that the boundary almost coincides with
quasihorizon.



4. Quasiblack holes

S for spherical configurations:

·Spacetime is composed of some interior, with energy density ρ and pressure
p, and the Schwarzschild solution outside, characterized by the mass m or
equivalently by the gravitational radius r+. The surface of the star is at R.

·Consider then a general metric for a static spherically symmetric distribution

ds2 =−N2(r)e2ψ(r)dt2 +
dr2

N2(r)
+ r2(dθ

2 + sin2
θdφ

2) .

Einstein’s equations yield

N2(r) = 1− 8π

r

∫ r

0
dr̄ r̄2

ρ , ψ(r) = 4π

∫ r

R
dr̄

(ρ +p) r̄
N2(r̄)

,

where ρ and p are the matter energy density and pressure, respectively. If the
matter is constrained to the region r ≤ R, then for r ≥ R one has ψ(r) = 0 and
N2 = 1− r+

r .



4. Quasiblack holes
·Give the 1st law of thermodynamics in terms of boundary values (York 1986,
Brown-York 1993). Since it is spherically symmetric it can be written as

TdS = dE+pdA ,

where the quantities are locally defined quantities at radius R, say. T is the
temperature, S the entropy, E the energy, p the pressure, and A the area.

r
+

R

surface of star

ET
p

·Find S by changing simultaneously the radius R and E, to keep it near r+, with
N→ 0 for all configurations of interest.

·Write R = r+(1+δ ) and send δ → 0 ensuring star is kept near the quasi-
horizon. Then integrate the 1st law along such a sequence of quasihorizon
objects, counting different members of the same family of states and obtain S
for a given r+.



4. Quasiblack holes
·As an example find the entropy of the simplest configuration, Schwarzschild
exterior solution and Minkowski inside, i.e., a thin-shell system at its own
gravitational radius. Then, the gravitational radius r+, the radius of the shell
R, and its proper mass M are connected by the relation r+ = 2M− M2

R . Note
r+ = 2m, with m the ADM mass and E ≡M.

Find M = R(1−N), and p = (1−N)2

16πRN the tangential pressure, with N2 = 1− r+
r .

Use A = 4πR2 the area of the shell.

In the process of integrating the 1st law, TdS = dM+pdA, all three quantities
R, r+, and M, change but in such a way that R = r+(1+δ ), i.e., change
simultaneously R and r+ when passing from one equilibrium configuration to
another. The second term p = 1

16πRN ≈
1

16π r+ N is huge since N is small. Also
dA = 8πr+dr+. The first term is dM ≈ dR≈ dr+, negligible. Take into
account the Tolman formula for the temperature T = T0

N and that near the
quasihorizon the backreaction of quantum fields becomes divergent unless
T0 = TH = κ

2π
= 1

4πr+
yields

S =
1
4

A+ .



4. Quasiblack holes
Interesting that the thin shell offers an alternative route, different from the
quasiblack hole approach. It has an exact solution for all shell radii R. Write

TdS = dM+pdA .

Again, take into account the junction to find 16πp = (1−N)2

RN , with
N2 = 1− r+

r . Now take into account the integrability conditions, and changing
variables from (M,R) to (r+,R), it turns out that T = T0(r+)

N necessarily and
the 1st law becomes dS = dr+

2T0(r+)
, where T0 has the usual meaning of the

temperature measured by an observer at infinity. Hence the entropy can be
found by direct integration. Again choose T0(r+) = TH = 1

4πr+
and find

S = 1
4 A+ (Lemos et al 2008-2019). The formula is valid everywhere including

the near-horizon region R = r+.

The entropy of a thin shell does not depend on R. This is a consequence of the
fact that there is no matter inside, so ∂S

∂R = 0 everywhere. For general
configurations ∂S

∂R is non-zero, can only find the entropy via the QBH
approach.



4. Quasiblack holes

S for generic configurations non spherically symmetric:

·In this generic case it is appropriate to use Gauss coordinates. Near the
quasihorizon write

ds2 =−N2dt2 +dl2 +gabdxadxb , where a,b = 1,2.

Suppose that the boundary of the compact body is at some l = constant = 0.
Local Tolman temperature is T . T0 is the temperature at asymptotically flat
infinity. Relation between them is T = T0

N .

l

surface of star

quasihorizon

T



4. Quasiblack holes

·Give the 1st law of thermodynamics in terms of boundary value densities
(York 1986, Brown-York 1993)

Td(
√

gs) = d(
√

gε)+
Θab

2
√

gdgab ,

s is the entropy density, ε is the energy density on the layer defined as ε = K
8π

.
K = Kab gab =− 1√

g
√

g ′. The spatial energy-momentum tensor on the layer

Θab is 8πΘab = Kab +
(

N′
N −K

)
gab. These quantities include gravitational as

well as matter fields. Can add electric charge.

·Integrate 1st law to obtain S. Usually need an equation of state to integrate on
a path along the energy first and along radius after, say. Not here. Pick
another path, i.e., choose sequence of configurations such that all members
remain on the threshold of horizon formation and integrate over this very
subset. The answer should be model-independent.



4. Quasiblack holes

·Now, to have a regular horizon to an outside observer one has
Kab = K1

abl+O(l2). Then ε = K/8π remains finite. The spatial stresses,

8πΘab = Kab +
(

N′
N −K

)
gab, diverge due to N′

N . In the outer region N′+ = κ .
The dominant contribution then gives the 1st law in the form
d(s
√

g) = κ

16πT0

√
ggabdgab. Take into account that near the quasihorizon the

backreaction of quantum fields becomes divergent and only the choice T0 =
TH = κ

2π
enables us to obtain a finite result. Thus, d(s

√
g) = 1

4 d
√

g and so the
entropy density at the quasihorizon is s

√
g = 1

4
√

g, up to a constant which we
put to zero. Upon integration over the surface, i.e.,

∫
d2x, get

S =
1
4

A+ .

This is the Bekenstein-Hawking entropy for a quasiblack hole, or for a black
hole through a quasiblack hole approach (Lemos-Zaslavskii 2010, 2018).

·By finding the QBH entropy through a thermodynamic approach intend to
throw light on the issue. The modes are on the horizon and seem to be
gravitational modes (Lemos-Zaslavskii 2010, 2018).



4. Quasiblack holes

S in the extremal case:

·What about the entropy in the extremal case?

·The entropy of extremal black holes is a particularly interesting problem.
Arguments based on periodicity of the Euclidean section of the black hole
lead one to assign zero entropy in the extremal case. However, extremal black
hole solutions in string theory typically have the conventional value given by
the area formula S = A+/4.

·In the extremal case the stresses are finite, and so not all possible modes are
excited. This means that the entropy should be S≤ 1

4 A+. We find using both
the quasiblack hole and the thin shell approach that S = S(A+) with S(A+)
arbitrary. So conclude

0≤ S≤ 1
4

A+ .

It suggests that the extremal entropy depends on the manner the quasiblack
hole, and thus the black hole, has formed (Lemos-Zaslavksii 2010,
Lemos-Quinta-Zaslavskii 2015-2017, see also Pretorius-Vollick-Israel 1998).



5. Conclusions
·QBH solutions show that there are matter solutions up to the horizon. The
Kretschmann scalar is finite, although some degeneracy, a naked horizon.
·It is a kind of membrane paradigm. By taking a timelike matter surface into a
null horizon we are recovering the membrane paradigm. A difference is that
our membrane is not ficticious like in the paradigm, it is real matter.
·For the entropy the results suggest that the degrees of freedom are on the
horizon. It is when a horizon is formed and the system has to settle to the
Hawking temperature that the entropy takes the value A/4. The results
suggest that the degrees of freedom are gravitational modes. When the QBH
state is approached the tangential pressure goes to infinite, i.e., to the Planck
pressure. Then modes, presumably quantum gravitational modes, are induced.
·Studies are being initiated to understand the entropy of systems with both a
black hole and a cosmological horizon (André-Lemos-Zaslavskii 2019).
·Stellar structure started with Eddington 100 years ago. Further improvements
on compact stars led Oppenheimer and Snyder in 1939 to show that a black
hole was a natural outcome. Have we seen all objects in nature that there are
to see? All very difficult but payed for itself, and in what manner! I guess.

that is why we are here now.
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